math help

What is 22/60 + 3/11?

What is 22/60 + 3/11?

Here's how you add

22
60
+
3
11

Step 1

We can't add two fractions with different denominators (the bottom number). So you need to get a common denominator - both bottom numbers need to match. To do this, you'll multiply the denominators times each other... but the numerators have to change, too. They get multiplied by the other term's denominator.

So we multiply 22 by 11, and get 242, then we multiply 60 by 11 and get 660.

22/60 times 11

Do the same for the second term. We multiply 3 by 60, and get 180, then multiply 60 by 11 and get 660.

3/11 times 60

So now our fractions look like this:

242
660
+
180
660

Step 2

Since our denominators match, we can add the numerators.

242 + 180 = 422

So the answer is:

422
660

Step 3

Last of all, we need to simplify the fraction, if possible. Can it be reduced to a simpler fraction?

To find out, we try dividing it by 2...

Are both the numerator and the denominator evenly divisible by 2? Yes! So we reduce it:

422
660
÷ 2 =
211
330

Let's try dividing by that again...

Nope! So now we try the next greatest prime number, 3...

Nope! So now we try the next greatest prime number, 5...

Nope! So now we try the next greatest prime number, 7...

Nope! So now we try the next greatest prime number, 11...

Nope! So now we try the next greatest prime number, 13...

Nope! So now we try the next greatest prime number, 17...

Nope! So now we try the next greatest prime number, 19...

Nope! So now we try the next greatest prime number, 23...

Nope! So now we try the next greatest prime number, 29...

Nope! So now we try the next greatest prime number, 31...

Nope! So now we try the next greatest prime number, 37...

Nope! So now we try the next greatest prime number, 41...

Nope! So now we try the next greatest prime number, 43...

Nope! So now we try the next greatest prime number, 47...

Nope! So now we try the next greatest prime number, 53...

Nope! So now we try the next greatest prime number, 59...

Nope! So now we try the next greatest prime number, 61...

Nope! So now we try the next greatest prime number, 67...

Nope! So now we try the next greatest prime number, 71...

Nope! So now we try the next greatest prime number, 73...

Nope! So now we try the next greatest prime number, 79...

Nope! So now we try the next greatest prime number, 83...

Nope! So now we try the next greatest prime number, 89...

Nope! So now we try the next greatest prime number, 97...

Nope! So now we try the next greatest prime number, 101...

Nope! So now we try the next greatest prime number, 103...

Nope! So now we try the next greatest prime number, 107...

Nope! So now we try the next greatest prime number, 109...

Nope! So now we try the next greatest prime number, 113...

Nope! So now we try the next greatest prime number, 127...

Nope! So now we try the next greatest prime number, 131...

Nope! So now we try the next greatest prime number, 137...

Nope! So now we try the next greatest prime number, 139...

Nope! So now we try the next greatest prime number, 149...

Nope! So now we try the next greatest prime number, 151...

Nope! So now we try the next greatest prime number, 157...

Nope! So now we try the next greatest prime number, 163...

Nope! So now we try the next greatest prime number, 167...

Nope! So now we try the next greatest prime number, 173...

Nope! So now we try the next greatest prime number, 179...

Nope! So now we try the next greatest prime number, 181...

Nope! So now we try the next greatest prime number, 191...

Nope! So now we try the next greatest prime number, 193...

Nope! So now we try the next greatest prime number, 197...

Nope! So now we try the next greatest prime number, 199...

Nope! So now we try the next greatest prime number, 211...

Nope! So now we try the next greatest prime number, 223...

No good. 223 is larger than 211. So we're done reducing.

There you have it! Here's the final answer to 22/60 + 3/11

22
60
+
3
11
=
211
330
© 2014 Randy Tayler