math help

What is 63/58 + 4/7?

What is 63/58 + 4/7?

This is how to add

63
58
+
4
7

Step 1

We can't add two fractions with different denominators (the bottom number). So you need to get a common denominator - both bottom numbers need to match. To do this, you'll multiply the denominators times each other... but the numerators have to change, too. They get multiplied by the other term's denominator.

So we multiply 63 by 7, and get 441, then we multiply 58 by 7 and get 406.

63/58 times 7

Do the same for the second term. We multiply 4 by 58, and get 232, then multiply 58 by 7 and get 406.

4/7 times 58

So now our fractions look like this:

441
406
+
232
406

Step 2

Since our denominators match, we can add the numerators.

441 + 232 = 673

Now we have an answer.

673
406

Step 3

Last of all, we need to simplify the fraction, if possible. Can it be reduced to a simpler fraction?

To find out, we try dividing it by 2...

Nope! So now we try the next greatest prime number, 3...

Nope! So now we try the next greatest prime number, 5...

Nope! So now we try the next greatest prime number, 7...

Nope! So now we try the next greatest prime number, 11...

Nope! So now we try the next greatest prime number, 13...

Nope! So now we try the next greatest prime number, 17...

Nope! So now we try the next greatest prime number, 19...

Nope! So now we try the next greatest prime number, 23...

Nope! So now we try the next greatest prime number, 29...

Nope! So now we try the next greatest prime number, 31...

Nope! So now we try the next greatest prime number, 37...

Nope! So now we try the next greatest prime number, 41...

Nope! So now we try the next greatest prime number, 43...

Nope! So now we try the next greatest prime number, 47...

Nope! So now we try the next greatest prime number, 53...

Nope! So now we try the next greatest prime number, 59...

Nope! So now we try the next greatest prime number, 61...

Nope! So now we try the next greatest prime number, 67...

Nope! So now we try the next greatest prime number, 71...

Nope! So now we try the next greatest prime number, 73...

Nope! So now we try the next greatest prime number, 79...

Nope! So now we try the next greatest prime number, 83...

Nope! So now we try the next greatest prime number, 89...

Nope! So now we try the next greatest prime number, 97...

Nope! So now we try the next greatest prime number, 101...

Nope! So now we try the next greatest prime number, 103...

Nope! So now we try the next greatest prime number, 107...

Nope! So now we try the next greatest prime number, 109...

Nope! So now we try the next greatest prime number, 113...

Nope! So now we try the next greatest prime number, 127...

Nope! So now we try the next greatest prime number, 131...

Nope! So now we try the next greatest prime number, 137...

Nope! So now we try the next greatest prime number, 139...

Nope! So now we try the next greatest prime number, 149...

Nope! So now we try the next greatest prime number, 151...

Nope! So now we try the next greatest prime number, 157...

Nope! So now we try the next greatest prime number, 163...

Nope! So now we try the next greatest prime number, 167...

Nope! So now we try the next greatest prime number, 173...

Nope! So now we try the next greatest prime number, 179...

Nope! So now we try the next greatest prime number, 181...

Nope! So now we try the next greatest prime number, 191...

Nope! So now we try the next greatest prime number, 193...

Nope! So now we try the next greatest prime number, 197...

Nope! So now we try the next greatest prime number, 199...

Nope! So now we try the next greatest prime number, 211...

Nope! So now we try the next greatest prime number, 223...

Nope! So now we try the next greatest prime number, 227...

Nope! So now we try the next greatest prime number, 229...

Nope! So now we try the next greatest prime number, 233...

Nope! So now we try the next greatest prime number, 239...

Nope! So now we try the next greatest prime number, 241...

Nope! So now we try the next greatest prime number, 251...

Nope! So now we try the next greatest prime number, 257...

Nope! So now we try the next greatest prime number, 263...

Nope! So now we try the next greatest prime number, 269...

Nope! So now we try the next greatest prime number, 271...

Nope! So now we try the next greatest prime number, 277...

Nope! So now we try the next greatest prime number, 281...

Nope! So now we try the next greatest prime number, 283...

Nope! So now we try the next greatest prime number, 293...

Nope! So now we try the next greatest prime number, 307...

Nope! So now we try the next greatest prime number, 311...

Nope! So now we try the next greatest prime number, 313...

Nope! So now we try the next greatest prime number, 317...

Nope! So now we try the next greatest prime number, 331...

Nope! So now we try the next greatest prime number, 337...

Nope! So now we try the next greatest prime number, 347...

Nope! So now we try the next greatest prime number, 349...

Nope! So now we try the next greatest prime number, 353...

Nope! So now we try the next greatest prime number, 359...

Nope! So now we try the next greatest prime number, 367...

Nope! So now we try the next greatest prime number, 373...

Nope! So now we try the next greatest prime number, 379...

Nope! So now we try the next greatest prime number, 383...

Nope! So now we try the next greatest prime number, 389...

Nope! So now we try the next greatest prime number, 397...

Nope! So now we try the next greatest prime number, 401...

Nope! So now we try the next greatest prime number, 409...

No good. 409 is larger than 406. So we're done reducing.

There you have it! Here's the final answer to 63/58 + 4/7

63
58
+
4
7
=
673
406
© 2014 Randy Tayler