math help

What is 9/60 + 10/11?

What is 9/60 + 10/11?

This is how to add

9
60
+
10
11

Step 1

Of course, you can't add two fractions if the denominators (bottom numbers) don't match. To get a common denominator, multiply the denominators together. Then we fix the numerators by multiplying each one by their other term's denominator.

Now you multiply 9 by 11, and get 99, then we multiply 60 by 11 and get 660.

9/60 times 11

Do the same for the second term. We multiply 10 by 60, and get 600, then multiply 60 by 11 and get 660.

10/11 times 60

The problem now has new fractions to add:

99
660
+
600
660

Step 2

Since our denominators match, we can add the numerators.

99 + 600 = 699

This yields the answer

699
660

Step 3

The last step is to reduce the fraction if we can.

To find out, we try dividing it by 2...

Nope! So now we try the next greatest prime number, 3...

Are both the numerator and the denominator evenly divisible by 3? Yes! So we reduce it:

699
660
÷ 3 =
233
220

Let's try dividing by that again...

Nope! So now we try the next greatest prime number, 5...

Nope! So now we try the next greatest prime number, 7...

Nope! So now we try the next greatest prime number, 11...

Nope! So now we try the next greatest prime number, 13...

Nope! So now we try the next greatest prime number, 17...

Nope! So now we try the next greatest prime number, 19...

Nope! So now we try the next greatest prime number, 23...

Nope! So now we try the next greatest prime number, 29...

Nope! So now we try the next greatest prime number, 31...

Nope! So now we try the next greatest prime number, 37...

Nope! So now we try the next greatest prime number, 41...

Nope! So now we try the next greatest prime number, 43...

Nope! So now we try the next greatest prime number, 47...

Nope! So now we try the next greatest prime number, 53...

Nope! So now we try the next greatest prime number, 59...

Nope! So now we try the next greatest prime number, 61...

Nope! So now we try the next greatest prime number, 67...

Nope! So now we try the next greatest prime number, 71...

Nope! So now we try the next greatest prime number, 73...

Nope! So now we try the next greatest prime number, 79...

Nope! So now we try the next greatest prime number, 83...

Nope! So now we try the next greatest prime number, 89...

Nope! So now we try the next greatest prime number, 97...

Nope! So now we try the next greatest prime number, 101...

Nope! So now we try the next greatest prime number, 103...

Nope! So now we try the next greatest prime number, 107...

Nope! So now we try the next greatest prime number, 109...

Nope! So now we try the next greatest prime number, 113...

Nope! So now we try the next greatest prime number, 127...

Nope! So now we try the next greatest prime number, 131...

Nope! So now we try the next greatest prime number, 137...

Nope! So now we try the next greatest prime number, 139...

Nope! So now we try the next greatest prime number, 149...

Nope! So now we try the next greatest prime number, 151...

Nope! So now we try the next greatest prime number, 157...

Nope! So now we try the next greatest prime number, 163...

Nope! So now we try the next greatest prime number, 167...

Nope! So now we try the next greatest prime number, 173...

Nope! So now we try the next greatest prime number, 179...

Nope! So now we try the next greatest prime number, 181...

Nope! So now we try the next greatest prime number, 191...

Nope! So now we try the next greatest prime number, 193...

Nope! So now we try the next greatest prime number, 197...

Nope! So now we try the next greatest prime number, 199...

Nope! So now we try the next greatest prime number, 211...

Nope! So now we try the next greatest prime number, 223...

No good. 223 is larger than 220. So we're done reducing.

There you have it! Here's the final answer to 9/60 + 10/11

9
60
+
10
11
=
233
220
© 2014 Randy Tayler

10/11 + 1/2
10/11 - 1/2
10/11 + 1/3
10/11 - 1/3
10/11 + 2/3
10/11 - 2/3
10/11 + 1/4
10/11 - 1/4
10/11 + 2/4
10/11 - 2/4
10/11 + 3/4
10/11 - 3/4
10/11 + 1/5
10/11 - 1/5
10/11 + 2/5
10/11 - 2/5
10/11 + 3/5
10/11 - 3/5
10/11 + 4/5
10/11 - 4/5
10/11 + 1/6
10/11 - 1/6
10/11 + 2/6
10/11 - 2/6
10/11 + 3/6
10/11 - 3/6
10/11 + 4/6
10/11 - 4/6
10/11 + 5/6
10/11 - 5/6
10/11 + 1/7
10/11 - 1/7
10/11 + 2/7
10/11 - 2/7
10/11 + 3/7
10/11 - 3/7
10/11 + 4/7
10/11 - 4/7
10/11 + 5/7
10/11 - 5/7
10/11 + 6/7
10/11 - 6/7
10/11 + 1/8
10/11 - 1/8
10/11 + 2/8
10/11 - 2/8
10/11 + 3/8
10/11 - 3/8
10/11 + 4/8
10/11 - 4/8
10/11 + 5/8
10/11 - 5/8
10/11 + 6/8
10/11 - 6/8
10/11 + 7/8
10/11 - 7/8
10/11 + 1/9
10/11 - 1/9
10/11 + 2/9
10/11 - 2/9
10/11 + 3/9
10/11 - 3/9
10/11 + 4/9
10/11 - 4/9
10/11 + 5/9
10/11 - 5/9
10/11 + 6/9
10/11 - 6/9
10/11 + 7/9
10/11 - 7/9
10/11 + 8/9
10/11 - 8/9
10/11 + 1/10
10/11 - 1/10
10/11 + 2/10
10/11 - 2/10
10/11 + 3/10
10/11 - 3/10
10/11 + 4/10
10/11 - 4/10
10/11 + 5/10
10/11 - 5/10
10/11 + 6/10
10/11 - 6/10
10/11 + 7/10
10/11 - 7/10
10/11 + 8/10
10/11 - 8/10
10/11 + 9/10
10/11 - 9/10
10/11 + 1/11
10/11 - 1/11
10/11 + 2/11
10/11 - 2/11
10/11 + 3/11
10/11 - 3/11
10/11 + 4/11
10/11 - 4/11
10/11 + 5/11
10/11 - 5/11
10/11 + 6/11
10/11 - 6/11
10/11 + 7/11
10/11 - 7/11
10/11 + 8/11
10/11 - 8/11
10/11 + 9/11
10/11 - 9/11
10/11 + 10/11
10/11 - 10/11
10/11 + 1/12
10/11 - 1/12
10/11 + 2/12
10/11 - 2/12
10/11 + 3/12
10/11 - 3/12
10/11 + 4/12
10/11 - 4/12
10/11 + 5/12
10/11 - 5/12
10/11 + 6/12
10/11 - 6/12
10/11 + 7/12
10/11 - 7/12
10/11 + 8/12
10/11 - 8/12
10/11 + 9/12
10/11 - 9/12
10/11 + 10/12
10/11 - 10/12
10/11 + 11/12
10/11 - 11/12