math help

What is 9/48 + 10/11?

What is 9/48 + 10/11?

Let's add

9
48
+
10
11

Step 1

Of course, you can't add two fractions if the denominators (bottom numbers) don't match. To get a common denominator, multiply the denominators together. Then we fix the numerators by multiplying each one by their other term's denominator.

Now you multiply 9 by 11, and get 99, then we multiply 48 by 11 and get 528.

9/48 times 11

Do the same for the second term. We multiply 10 by 48, and get 480, then multiply 48 by 11 and get 528.

10/11 times 48

The problem now has new fractions to add:

99
528
+
480
528

Step 2

Since our denominators match, we can add the numerators.

99 + 480 = 579

The sum we get is

579
528

Step 3

The last step is to reduce the fraction if we can.

To find out, we try dividing it by 2...

Nope! So now we try the next greatest prime number, 3...

Are both the numerator and the denominator evenly divisible by 3? Yes! So we reduce it:

579
528
÷ 3 =
193
176

Let's try dividing by that again...

Nope! So now we try the next greatest prime number, 5...

Nope! So now we try the next greatest prime number, 7...

Nope! So now we try the next greatest prime number, 11...

Nope! So now we try the next greatest prime number, 13...

Nope! So now we try the next greatest prime number, 17...

Nope! So now we try the next greatest prime number, 19...

Nope! So now we try the next greatest prime number, 23...

Nope! So now we try the next greatest prime number, 29...

Nope! So now we try the next greatest prime number, 31...

Nope! So now we try the next greatest prime number, 37...

Nope! So now we try the next greatest prime number, 41...

Nope! So now we try the next greatest prime number, 43...

Nope! So now we try the next greatest prime number, 47...

Nope! So now we try the next greatest prime number, 53...

Nope! So now we try the next greatest prime number, 59...

Nope! So now we try the next greatest prime number, 61...

Nope! So now we try the next greatest prime number, 67...

Nope! So now we try the next greatest prime number, 71...

Nope! So now we try the next greatest prime number, 73...

Nope! So now we try the next greatest prime number, 79...

Nope! So now we try the next greatest prime number, 83...

Nope! So now we try the next greatest prime number, 89...

Nope! So now we try the next greatest prime number, 97...

Nope! So now we try the next greatest prime number, 101...

Nope! So now we try the next greatest prime number, 103...

Nope! So now we try the next greatest prime number, 107...

Nope! So now we try the next greatest prime number, 109...

Nope! So now we try the next greatest prime number, 113...

Nope! So now we try the next greatest prime number, 127...

Nope! So now we try the next greatest prime number, 131...

Nope! So now we try the next greatest prime number, 137...

Nope! So now we try the next greatest prime number, 139...

Nope! So now we try the next greatest prime number, 149...

Nope! So now we try the next greatest prime number, 151...

Nope! So now we try the next greatest prime number, 157...

Nope! So now we try the next greatest prime number, 163...

Nope! So now we try the next greatest prime number, 167...

Nope! So now we try the next greatest prime number, 173...

Nope! So now we try the next greatest prime number, 179...

No good. 179 is larger than 176. So we're done reducing.

There you have it! Here's the final answer to 9/48 + 10/11

9
48
+
10
11
=
193
176
© 2014 Randy Tayler

10/11 + 1/2
10/11 - 1/2
10/11 + 1/3
10/11 - 1/3
10/11 + 2/3
10/11 - 2/3
10/11 + 1/4
10/11 - 1/4
10/11 + 2/4
10/11 - 2/4
10/11 + 3/4
10/11 - 3/4
10/11 + 1/5
10/11 - 1/5
10/11 + 2/5
10/11 - 2/5
10/11 + 3/5
10/11 - 3/5
10/11 + 4/5
10/11 - 4/5
10/11 + 1/6
10/11 - 1/6
10/11 + 2/6
10/11 - 2/6
10/11 + 3/6
10/11 - 3/6
10/11 + 4/6
10/11 - 4/6
10/11 + 5/6
10/11 - 5/6
10/11 + 1/7
10/11 - 1/7
10/11 + 2/7
10/11 - 2/7
10/11 + 3/7
10/11 - 3/7
10/11 + 4/7
10/11 - 4/7
10/11 + 5/7
10/11 - 5/7
10/11 + 6/7
10/11 - 6/7
10/11 + 1/8
10/11 - 1/8
10/11 + 2/8
10/11 - 2/8
10/11 + 3/8
10/11 - 3/8
10/11 + 4/8
10/11 - 4/8
10/11 + 5/8
10/11 - 5/8
10/11 + 6/8
10/11 - 6/8
10/11 + 7/8
10/11 - 7/8
10/11 + 1/9
10/11 - 1/9
10/11 + 2/9
10/11 - 2/9
10/11 + 3/9
10/11 - 3/9
10/11 + 4/9
10/11 - 4/9
10/11 + 5/9
10/11 - 5/9
10/11 + 6/9
10/11 - 6/9
10/11 + 7/9
10/11 - 7/9
10/11 + 8/9
10/11 - 8/9
10/11 + 1/10
10/11 - 1/10
10/11 + 2/10
10/11 - 2/10
10/11 + 3/10
10/11 - 3/10
10/11 + 4/10
10/11 - 4/10
10/11 + 5/10
10/11 - 5/10
10/11 + 6/10
10/11 - 6/10
10/11 + 7/10
10/11 - 7/10
10/11 + 8/10
10/11 - 8/10
10/11 + 9/10
10/11 - 9/10
10/11 + 1/11
10/11 - 1/11
10/11 + 2/11
10/11 - 2/11
10/11 + 3/11
10/11 - 3/11
10/11 + 4/11
10/11 - 4/11
10/11 + 5/11
10/11 - 5/11
10/11 + 6/11
10/11 - 6/11
10/11 + 7/11
10/11 - 7/11
10/11 + 8/11
10/11 - 8/11
10/11 + 9/11
10/11 - 9/11
10/11 + 10/11
10/11 - 10/11
10/11 + 1/12
10/11 - 1/12
10/11 + 2/12
10/11 - 2/12
10/11 + 3/12
10/11 - 3/12
10/11 + 4/12
10/11 - 4/12
10/11 + 5/12
10/11 - 5/12
10/11 + 6/12
10/11 - 6/12
10/11 + 7/12
10/11 - 7/12
10/11 + 8/12
10/11 - 8/12
10/11 + 9/12
10/11 - 9/12
10/11 + 10/12
10/11 - 10/12
10/11 + 11/12
10/11 - 11/12