math help

What is 20/64 + 7/11?

What is 20/64 + 7/11?

Here's how we add

20
64
+
7
11

Step 1

Of course, you can't add two fractions if the denominators (bottom numbers) don't match. To get a common denominator, multiply the denominators together. Then we fix the numerators by multiplying each one by their other term's denominator.

Now you multiply 20 by 11, and get 220, then we multiply 64 by 11 and get 704.

20/64 times 11

Do the same for the second term. We multiply 7 by 64, and get 448, then multiply 64 by 11 and get 704.

7/11 times 64

The problem now has new fractions to add:

220
704
+
448
704

Step 2

Since our denominators match, we can add the numerators.

220 + 448 = 668

The sum we get is

668
704

Step 3

The last step is to reduce the fraction if we can.

To find out, we try dividing it by 2...

Are both the numerator and the denominator evenly divisible by 2? Yes! So we reduce it:

668
704
÷ 2 =
334
352

Let's try dividing by that again...

Are both the numerator and the denominator evenly divisible by 2? Yes! So we reduce it:

334
352
÷ 2 =
167
176

Let's try dividing by that again...

Nope! So now we try the next greatest prime number, 3...

Nope! So now we try the next greatest prime number, 5...

Nope! So now we try the next greatest prime number, 7...

Nope! So now we try the next greatest prime number, 11...

Nope! So now we try the next greatest prime number, 13...

Nope! So now we try the next greatest prime number, 17...

Nope! So now we try the next greatest prime number, 19...

Nope! So now we try the next greatest prime number, 23...

Nope! So now we try the next greatest prime number, 29...

Nope! So now we try the next greatest prime number, 31...

Nope! So now we try the next greatest prime number, 37...

Nope! So now we try the next greatest prime number, 41...

Nope! So now we try the next greatest prime number, 43...

Nope! So now we try the next greatest prime number, 47...

Nope! So now we try the next greatest prime number, 53...

Nope! So now we try the next greatest prime number, 59...

Nope! So now we try the next greatest prime number, 61...

Nope! So now we try the next greatest prime number, 67...

Nope! So now we try the next greatest prime number, 71...

Nope! So now we try the next greatest prime number, 73...

Nope! So now we try the next greatest prime number, 79...

Nope! So now we try the next greatest prime number, 83...

Nope! So now we try the next greatest prime number, 89...

Nope! So now we try the next greatest prime number, 97...

Nope! So now we try the next greatest prime number, 101...

Nope! So now we try the next greatest prime number, 103...

Nope! So now we try the next greatest prime number, 107...

Nope! So now we try the next greatest prime number, 109...

Nope! So now we try the next greatest prime number, 113...

Nope! So now we try the next greatest prime number, 127...

Nope! So now we try the next greatest prime number, 131...

Nope! So now we try the next greatest prime number, 137...

Nope! So now we try the next greatest prime number, 139...

Nope! So now we try the next greatest prime number, 149...

Nope! So now we try the next greatest prime number, 151...

Nope! So now we try the next greatest prime number, 157...

Nope! So now we try the next greatest prime number, 163...

Nope! So now we try the next greatest prime number, 167...

Nope! So now we try the next greatest prime number, 173...

No good. 173 is larger than 167. So we're done reducing.

There you have it! Here's the final answer to 20/64 + 7/11

20
64
+
7
11
=
167
176
© 2014 Randy Tayler