math help

What is 9/34 + 11/12?

What is 9/34 + 11/12?

This is how we add

9
34
+
11
12

Step 1

Of course, you can't add two fractions if the denominators (bottom numbers) don't match. To get a common denominator, multiply the denominators together. Then we fix the numerators by multiplying each one by their other term's denominator.

Now you multiply 9 by 12, and get 108, then we multiply 34 by 12 and get 408.

9/34 times 12

Do the same for the second term. We multiply 11 by 34, and get 374, then multiply 34 by 12 and get 408.

11/12 times 34

The problem now has new fractions to add:

108
408
+
374
408

Step 2

Since our denominators match, we can add the numerators.

108 + 374 = 482

This yields the answer

482
408

Step 3

The last step is to reduce the fraction if we can.

To find out, we try dividing it by 2...

Are both the numerator and the denominator evenly divisible by 2? Yes! So we reduce it:

482
408
÷ 2 =
241
204

Let's try dividing by that again...

Nope! So now we try the next greatest prime number, 3...

Nope! So now we try the next greatest prime number, 5...

Nope! So now we try the next greatest prime number, 7...

Nope! So now we try the next greatest prime number, 11...

Nope! So now we try the next greatest prime number, 13...

Nope! So now we try the next greatest prime number, 17...

Nope! So now we try the next greatest prime number, 19...

Nope! So now we try the next greatest prime number, 23...

Nope! So now we try the next greatest prime number, 29...

Nope! So now we try the next greatest prime number, 31...

Nope! So now we try the next greatest prime number, 37...

Nope! So now we try the next greatest prime number, 41...

Nope! So now we try the next greatest prime number, 43...

Nope! So now we try the next greatest prime number, 47...

Nope! So now we try the next greatest prime number, 53...

Nope! So now we try the next greatest prime number, 59...

Nope! So now we try the next greatest prime number, 61...

Nope! So now we try the next greatest prime number, 67...

Nope! So now we try the next greatest prime number, 71...

Nope! So now we try the next greatest prime number, 73...

Nope! So now we try the next greatest prime number, 79...

Nope! So now we try the next greatest prime number, 83...

Nope! So now we try the next greatest prime number, 89...

Nope! So now we try the next greatest prime number, 97...

Nope! So now we try the next greatest prime number, 101...

Nope! So now we try the next greatest prime number, 103...

Nope! So now we try the next greatest prime number, 107...

Nope! So now we try the next greatest prime number, 109...

Nope! So now we try the next greatest prime number, 113...

Nope! So now we try the next greatest prime number, 127...

Nope! So now we try the next greatest prime number, 131...

Nope! So now we try the next greatest prime number, 137...

Nope! So now we try the next greatest prime number, 139...

Nope! So now we try the next greatest prime number, 149...

Nope! So now we try the next greatest prime number, 151...

Nope! So now we try the next greatest prime number, 157...

Nope! So now we try the next greatest prime number, 163...

Nope! So now we try the next greatest prime number, 167...

Nope! So now we try the next greatest prime number, 173...

Nope! So now we try the next greatest prime number, 179...

Nope! So now we try the next greatest prime number, 181...

Nope! So now we try the next greatest prime number, 191...

Nope! So now we try the next greatest prime number, 193...

Nope! So now we try the next greatest prime number, 197...

Nope! So now we try the next greatest prime number, 199...

Nope! So now we try the next greatest prime number, 211...

No good. 211 is larger than 204. So we're done reducing.

There you have it! Here's the final answer to 9/34 + 11/12

9
34
+
11
12
=
241
204
© 2014 Randy Tayler

11/12 + 1/2
11/12 - 1/2
11/12 + 1/3
11/12 - 1/3
11/12 + 2/3
11/12 - 2/3
11/12 + 1/4
11/12 - 1/4
11/12 + 2/4
11/12 - 2/4
11/12 + 3/4
11/12 - 3/4
11/12 + 1/5
11/12 - 1/5
11/12 + 2/5
11/12 - 2/5
11/12 + 3/5
11/12 - 3/5
11/12 + 4/5
11/12 - 4/5
11/12 + 1/6
11/12 - 1/6
11/12 + 2/6
11/12 - 2/6
11/12 + 3/6
11/12 - 3/6
11/12 + 4/6
11/12 - 4/6
11/12 + 5/6
11/12 - 5/6
11/12 + 1/7
11/12 - 1/7
11/12 + 2/7
11/12 - 2/7
11/12 + 3/7
11/12 - 3/7
11/12 + 4/7
11/12 - 4/7
11/12 + 5/7
11/12 - 5/7
11/12 + 6/7
11/12 - 6/7
11/12 + 1/8
11/12 - 1/8
11/12 + 2/8
11/12 - 2/8
11/12 + 3/8
11/12 - 3/8
11/12 + 4/8
11/12 - 4/8
11/12 + 5/8
11/12 - 5/8
11/12 + 6/8
11/12 - 6/8
11/12 + 7/8
11/12 - 7/8
11/12 + 1/9
11/12 - 1/9
11/12 + 2/9
11/12 - 2/9
11/12 + 3/9
11/12 - 3/9
11/12 + 4/9
11/12 - 4/9
11/12 + 5/9
11/12 - 5/9
11/12 + 6/9
11/12 - 6/9
11/12 + 7/9
11/12 - 7/9
11/12 + 8/9
11/12 - 8/9
11/12 + 1/10
11/12 - 1/10
11/12 + 2/10
11/12 - 2/10
11/12 + 3/10
11/12 - 3/10
11/12 + 4/10
11/12 - 4/10
11/12 + 5/10
11/12 - 5/10
11/12 + 6/10
11/12 - 6/10
11/12 + 7/10
11/12 - 7/10
11/12 + 8/10
11/12 - 8/10
11/12 + 9/10
11/12 - 9/10
11/12 + 1/11
11/12 - 1/11
11/12 + 2/11
11/12 - 2/11
11/12 + 3/11
11/12 - 3/11
11/12 + 4/11
11/12 - 4/11
11/12 + 5/11
11/12 - 5/11
11/12 + 6/11
11/12 - 6/11
11/12 + 7/11
11/12 - 7/11
11/12 + 8/11
11/12 - 8/11
11/12 + 9/11
11/12 - 9/11
11/12 + 10/11
11/12 - 10/11
11/12 + 1/12
11/12 - 1/12
11/12 + 2/12
11/12 - 2/12
11/12 + 3/12
11/12 - 3/12
11/12 + 4/12
11/12 - 4/12
11/12 + 5/12
11/12 - 5/12
11/12 + 6/12
11/12 - 6/12
11/12 + 7/12
11/12 - 7/12
11/12 + 8/12
11/12 - 8/12
11/12 + 9/12
11/12 - 9/12
11/12 + 10/12
11/12 - 10/12
11/12 + 11/12
11/12 - 11/12