math help

What is 9/32 + 8/11?

What is 9/32 + 8/11?

Here's how we add

9
32
+
8
11

Step 1

We can't add two fractions with different denominators (the bottom number). So you need to get a common denominator - both bottom numbers need to match. To do this, you'll multiply the denominators times each other... but the numerators have to change, too. They get multiplied by the other term's denominator.

So we multiply 9 by 11, and get 99, then we multiply 32 by 11 and get 352.

9/32 times 11

Do the same for the second term. We multiply 8 by 32, and get 256, then multiply 32 by 11 and get 352.

8/11 times 32

So now our fractions look like this:

99
352
+
256
352

Step 2

Since our denominators match, we can add the numerators.

99 + 256 = 355

Now we have an answer.

355
352

Step 3

Last of all, we need to simplify the fraction, if possible. Can it be reduced to a simpler fraction?

To find out, we try dividing it by 2...

Nope! So now we try the next greatest prime number, 3...

Nope! So now we try the next greatest prime number, 5...

Nope! So now we try the next greatest prime number, 7...

Nope! So now we try the next greatest prime number, 11...

Nope! So now we try the next greatest prime number, 13...

Nope! So now we try the next greatest prime number, 17...

Nope! So now we try the next greatest prime number, 19...

Nope! So now we try the next greatest prime number, 23...

Nope! So now we try the next greatest prime number, 29...

Nope! So now we try the next greatest prime number, 31...

Nope! So now we try the next greatest prime number, 37...

Nope! So now we try the next greatest prime number, 41...

Nope! So now we try the next greatest prime number, 43...

Nope! So now we try the next greatest prime number, 47...

Nope! So now we try the next greatest prime number, 53...

Nope! So now we try the next greatest prime number, 59...

Nope! So now we try the next greatest prime number, 61...

Nope! So now we try the next greatest prime number, 67...

Nope! So now we try the next greatest prime number, 71...

Nope! So now we try the next greatest prime number, 73...

Nope! So now we try the next greatest prime number, 79...

Nope! So now we try the next greatest prime number, 83...

Nope! So now we try the next greatest prime number, 89...

Nope! So now we try the next greatest prime number, 97...

Nope! So now we try the next greatest prime number, 101...

Nope! So now we try the next greatest prime number, 103...

Nope! So now we try the next greatest prime number, 107...

Nope! So now we try the next greatest prime number, 109...

Nope! So now we try the next greatest prime number, 113...

Nope! So now we try the next greatest prime number, 127...

Nope! So now we try the next greatest prime number, 131...

Nope! So now we try the next greatest prime number, 137...

Nope! So now we try the next greatest prime number, 139...

Nope! So now we try the next greatest prime number, 149...

Nope! So now we try the next greatest prime number, 151...

Nope! So now we try the next greatest prime number, 157...

Nope! So now we try the next greatest prime number, 163...

Nope! So now we try the next greatest prime number, 167...

Nope! So now we try the next greatest prime number, 173...

Nope! So now we try the next greatest prime number, 179...

Nope! So now we try the next greatest prime number, 181...

Nope! So now we try the next greatest prime number, 191...

Nope! So now we try the next greatest prime number, 193...

Nope! So now we try the next greatest prime number, 197...

Nope! So now we try the next greatest prime number, 199...

Nope! So now we try the next greatest prime number, 211...

Nope! So now we try the next greatest prime number, 223...

Nope! So now we try the next greatest prime number, 227...

Nope! So now we try the next greatest prime number, 229...

Nope! So now we try the next greatest prime number, 233...

Nope! So now we try the next greatest prime number, 239...

Nope! So now we try the next greatest prime number, 241...

Nope! So now we try the next greatest prime number, 251...

Nope! So now we try the next greatest prime number, 257...

Nope! So now we try the next greatest prime number, 263...

Nope! So now we try the next greatest prime number, 269...

Nope! So now we try the next greatest prime number, 271...

Nope! So now we try the next greatest prime number, 277...

Nope! So now we try the next greatest prime number, 281...

Nope! So now we try the next greatest prime number, 283...

Nope! So now we try the next greatest prime number, 293...

Nope! So now we try the next greatest prime number, 307...

Nope! So now we try the next greatest prime number, 311...

Nope! So now we try the next greatest prime number, 313...

Nope! So now we try the next greatest prime number, 317...

Nope! So now we try the next greatest prime number, 331...

Nope! So now we try the next greatest prime number, 337...

Nope! So now we try the next greatest prime number, 347...

Nope! So now we try the next greatest prime number, 349...

Nope! So now we try the next greatest prime number, 353...

No good. 353 is larger than 352. So we're done reducing.

There you have it! Here's the final answer to 9/32 + 8/11

9
32
+
8
11
=
355
352
© 2014 Randy Tayler