|
This is how you add
|
|||||||||||||||||||||||||
Step 1Can you add yet? Nope! The denominators don't match. We need a common denominator. So next we take both denominators and multiply them. Next, take each numerator and multiply it by the denominator of the other term. So, we multiply 56 by 11, and get 616, then we multiply 60 by 11 and get 660. Now for the second term. You multiply 8 by 60, and get 480, then multiply 60 by 11 and get 660. We now have a new problem, that looks like this:
|
|||||||||||||||||||||||||
Step 2Since our denominators match, we can add the numerators. 616 + 480 = 1096 That gives us the sum, which is
|
|||||||||||||||||||||||||
Step 3Now, do we need to simplify this fraction? First, we attempt to divide it by 2... Are both the numerator and the denominator evenly divisible by 2? Yes! So we reduce it:
Let's try dividing by that again... Are both the numerator and the denominator evenly divisible by 2? Yes! So we reduce it:
Let's try dividing by that again... Nope! So now we try the next greatest prime number, 3... Nope! So now we try the next greatest prime number, 5... Nope! So now we try the next greatest prime number, 7... Nope! So now we try the next greatest prime number, 11... Nope! So now we try the next greatest prime number, 13... Nope! So now we try the next greatest prime number, 17... Nope! So now we try the next greatest prime number, 19... Nope! So now we try the next greatest prime number, 23... Nope! So now we try the next greatest prime number, 29... Nope! So now we try the next greatest prime number, 31... Nope! So now we try the next greatest prime number, 37... Nope! So now we try the next greatest prime number, 41... Nope! So now we try the next greatest prime number, 43... Nope! So now we try the next greatest prime number, 47... Nope! So now we try the next greatest prime number, 53... Nope! So now we try the next greatest prime number, 59... Nope! So now we try the next greatest prime number, 61... Nope! So now we try the next greatest prime number, 67... Nope! So now we try the next greatest prime number, 71... Nope! So now we try the next greatest prime number, 73... Nope! So now we try the next greatest prime number, 79... Nope! So now we try the next greatest prime number, 83... Nope! So now we try the next greatest prime number, 89... Nope! So now we try the next greatest prime number, 97... Nope! So now we try the next greatest prime number, 101... Nope! So now we try the next greatest prime number, 103... Nope! So now we try the next greatest prime number, 107... Nope! So now we try the next greatest prime number, 109... Nope! So now we try the next greatest prime number, 113... Nope! So now we try the next greatest prime number, 127... Nope! So now we try the next greatest prime number, 131... Nope! So now we try the next greatest prime number, 137... Nope! So now we try the next greatest prime number, 139... Nope! So now we try the next greatest prime number, 149... Nope! So now we try the next greatest prime number, 151... Nope! So now we try the next greatest prime number, 157... Nope! So now we try the next greatest prime number, 163... Nope! So now we try the next greatest prime number, 167... No good. 167 is larger than 165. So we're done reducing. There you have it! Here's the final answer to 56/60 + 8/11
|