math help

What is 25/36 + 7/10?

What is 25/36 + 7/10?

Let's add

25
36
+
7
10

Step 1

Of course, you can't add two fractions if the denominators (bottom numbers) don't match. To get a common denominator, multiply the denominators together. Then we fix the numerators by multiplying each one by their other term's denominator.

Now you multiply 25 by 10, and get 250, then we multiply 36 by 10 and get 360.

25/36 times 10

Do the same for the second term. We multiply 7 by 36, and get 252, then multiply 36 by 10 and get 360.

7/10 times 36

The problem now has new fractions to add:

250
360
+
252
360

Step 2

Since our denominators match, we can add the numerators.

250 + 252 = 502

The sum we get is

502
360

Step 3

The last step is to reduce the fraction if we can.

To find out, we try dividing it by 2...

Are both the numerator and the denominator evenly divisible by 2? Yes! So we reduce it:

502
360
÷ 2 =
251
180

Let's try dividing by that again...

Nope! So now we try the next greatest prime number, 3...

Nope! So now we try the next greatest prime number, 5...

Nope! So now we try the next greatest prime number, 7...

Nope! So now we try the next greatest prime number, 11...

Nope! So now we try the next greatest prime number, 13...

Nope! So now we try the next greatest prime number, 17...

Nope! So now we try the next greatest prime number, 19...

Nope! So now we try the next greatest prime number, 23...

Nope! So now we try the next greatest prime number, 29...

Nope! So now we try the next greatest prime number, 31...

Nope! So now we try the next greatest prime number, 37...

Nope! So now we try the next greatest prime number, 41...

Nope! So now we try the next greatest prime number, 43...

Nope! So now we try the next greatest prime number, 47...

Nope! So now we try the next greatest prime number, 53...

Nope! So now we try the next greatest prime number, 59...

Nope! So now we try the next greatest prime number, 61...

Nope! So now we try the next greatest prime number, 67...

Nope! So now we try the next greatest prime number, 71...

Nope! So now we try the next greatest prime number, 73...

Nope! So now we try the next greatest prime number, 79...

Nope! So now we try the next greatest prime number, 83...

Nope! So now we try the next greatest prime number, 89...

Nope! So now we try the next greatest prime number, 97...

Nope! So now we try the next greatest prime number, 101...

Nope! So now we try the next greatest prime number, 103...

Nope! So now we try the next greatest prime number, 107...

Nope! So now we try the next greatest prime number, 109...

Nope! So now we try the next greatest prime number, 113...

Nope! So now we try the next greatest prime number, 127...

Nope! So now we try the next greatest prime number, 131...

Nope! So now we try the next greatest prime number, 137...

Nope! So now we try the next greatest prime number, 139...

Nope! So now we try the next greatest prime number, 149...

Nope! So now we try the next greatest prime number, 151...

Nope! So now we try the next greatest prime number, 157...

Nope! So now we try the next greatest prime number, 163...

Nope! So now we try the next greatest prime number, 167...

Nope! So now we try the next greatest prime number, 173...

Nope! So now we try the next greatest prime number, 179...

Nope! So now we try the next greatest prime number, 181...

No good. 181 is larger than 180. So we're done reducing.

There you have it! Here's the final answer to 25/36 + 7/10

25
36
+
7
10
=
251
180
© 2014 Randy Tayler